skip to main content


Search for: All records

Creators/Authors contains: "Lee, Seunghyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. null (Ed.)
    Elastomers often exhibit large stretchability but are not typically designed with robust energy dissipating mechanisms. As such, many elastomers are sensitive to the presence of flaws: cracks, notches, or any other features that cause inhomogeneous deformation significantly decrease the effective stretchability. To address this issue, we have dispersed voids into a silicone elastomer matrix, thereby creating a “negative” composite that provides increased fracture resistance and stretchability in pre-cut specimens while simultaneously decreasing the weight. Experiments and simulations show that the voids locally weaken the specimen, guiding the crack along a tortuous path that ultimately dissipates more energy. We investigate two geometries in pre-cut specimens (interconnected patterns of voids and randomly distributed discrete voids), each of which more than double the energy dissipated prior to complete rupture, as compared to that of the pristine elastomer. We also demonstrate that the energy dissipated during fracture increases with the volume fraction of the voids. Overall, this work demonstrates that voids can impart increased resistance to rupture in elastomers with flaws. Since additive manufacturing processes can readily introduce/pattern voids, we expect that applications of these elastomer–void​ “composites” will only increase going forward, as will the need to understand their mechanics. 
    more » « less